F(x)=x^2+9x-19

Simple and best practice solution for F(x)=x^2+9x-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=x^2+9x-19 equation:



(F)=F^2+9F-19
We move all terms to the left:
(F)-(F^2+9F-19)=0
We get rid of parentheses
-F^2+F-9F+19=0
We add all the numbers together, and all the variables
-1F^2-8F+19=0
a = -1; b = -8; c = +19;
Δ = b2-4ac
Δ = -82-4·(-1)·19
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{35}}{2*-1}=\frac{8-2\sqrt{35}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{35}}{2*-1}=\frac{8+2\sqrt{35}}{-2} $

See similar equations:

| 3x-32=3x+20 | | -3x+10+4x=3-x+7 | | 9v=12+5v | | 5^x^2=110 | | 15+25x=225 | | 2x+7-9x=-7 | | 3x+20=3x-16 | | 15x+25=225 | | 2w+31=0 | | H=0.3+5.5t-4.9^2 | | 8=4w+20 | | 3y+20=3y-16 | | 1.5625=210+x | | -2x+15=85 | | -9(3-2y)=72 | | (45+x)=2(20+x) | | 14y+39=165 | | 4x-33-77=180 | | 9x+0.7=27.7 | | 6x+5x-9=90 | | 5-7y=-9 | | 5(x-3)+2=7 | | (2x-3)=6x+14 | | .3+.2x=2.5+3.5 | | 14x-15x=105 | | .5(4x-6)=19 | | X+x+10=20 | | 7x+35-6x=33.8 | | 8=w÷3 | | 3x=x+x | | 3i)(2i)^2=0 | | 1200+40x=400+40x |

Equations solver categories